Using AirMSPI to elucidate absorbing aerosols from imagery in the field

Mike Tosca, Mike Garay, Mike Bull, David Diner

OBJECTIVE

 Develop a simple algorithm that can be used in the field to identify and detect the presence of absorbing aerosols (smoke)

Computation of a "pseudo-Aerosol Index"

AirMSPI has <u>355nm and 380nm bands</u>, which roughly compare to OMI/Aura 340/380 nm bands, enabling computation of an "Aerosol Index":

A.I. = -100 ×
$$[log_{10}(l_{355}/l_{380})_{meas} - log_{10}(l_{355}/l_{380})_{calc}]$$

Field-based proxy for AOD, without needing to do computationally expensive RT retrievals

Utilize oblique angles (58.9° aft); screen for clouds using 660 and 865nm; smoke \rightarrow AI > 0.5

Tucson – no aerosols

Tucson – no aerosols (58.9° aft)

Kalamath Mountains – thick smoke (58.9° aft)

Crescent City – THIN smoke (Nadir)

Crescent City – THIN smoke (58.9° aft)

Crescent City - THIN smoke (nadir v. 60A)

"SWEEP" Mode - smoke OVER cloud

Smoke over cloud is especially interesting when in principle-plane – can see cloud bow →

NEXT STEPS

Tomorrow is a big "fire flight" over the Mississippi Valley (August 19 was a "transported smoke" flight over the Central US)

Use our algorithm to quickly assess the presence, location and relative thickness of smoke in proximity to clouds and other features

Kalamath Mountains – thick smoke (nadir)

